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A class of clustering operators is defined which is a generalization of a 
transfer matrix of a Gibbs lattice field with an exponential decay of corre- 
lations. It is proved that for small values of t3 the clustering operator has 
invariant subspaces which are similar to k-particle subspaces of the Fock 
space. The restriction of the clustering operator onto these subspaces 
resembles the operator exp(-Hk),  where H~ is the k-particle SchrSdinger 
Hamiltonian in nonrelativistic quantum mechanics. The spectrum of each 
H~, k >/ 1, is contained in the interval (C1/~ ~, C2fl~). These intervals do not 
intersect with each other. 

KEY W O R D S  : Clustering operators ; clustering estimates ; transfer matrix ; 
spectrum of many*body system; one-particle space; two- ,  three-, and 
many-particle spaces. 

1.  I N T R O D U C T I O N  

Recent  work  in stat ist ical  physics and  quan tu m field theory  suggests the 
significance of  the fo l lowing class o f  opera tors ,  which appear  na tura l ly  in 
m a n y - b o d y  systems with an exponent ia l  decay o f  correlat ions.  

Let  9.1 be the set of  all finite subsets ( including the empty  one) o f  7/v; tL 
is the measure  ix(B) = IB[ for  B 6 9.1. 

A n  o p e r a t o r  A in L2(~l,/x) 

( A f ) ( T )  = ~ ar , r , f (T ' )  (1.1) 
T'egl 

is cal led clustering if: 

1. A commutes  wi th  t rans la t ions  Ut, t e 7/", in L2(~,/z),  

( V t f ) ( r )  = f ( r  - t) (1.2) 
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2. a~,.~ = 1, a~.r  = 0 if T ~ ~ and for T, T '  r ~ one has 

ar = E E . . . .  (1.3) 
k = 1 , 2  . . . .  {~1 . . . . .  ~,~} 

where .r~ = (T~, T~') ~ ~ x 71, T~, T (  r ~ ,  "~t u "2 = (T1 u 1"2, 1"1' u T2'), 
and the same for  intersections, ~ = (;~, ~) .  The summation in (1.3) is over 
all (nonordered)  partit ions 

(T, T ' )  = ,~ u . . .  tJ rk, ~-~ n rj = ~ if i r j 

I t  is assumed that "c luster  funct ions"  oak(r1 .... , rk) are symmetric with respect 
to permutat ions and satisfy the following condit ions:  

1. For  a l l k =  1, 2,..., and for  any s~ .... ,sksT/~ 

oJk(r~ + sz ..... rk + sk) = ~%(-~ ..... %) (1.4) 

where ~- + s = (T + s, T '  + s) i f ,  = (T, T'). Al though in fact w k in (1.3) 
depends only on collections with r~ n ~-j = ~ ,  i r j,  one can assume that  
~% are defined f o r  all collections (rz ..... -k)- 

2. There exist /3, 0 < /3 < 1 (clustering parameter),  and M > 0 such 
that for any k = 1, 2,... 

k 

[~ .... , rk)] < M(f l )  n, ~ = ~ d~, (1.5) 
i = : t  

where d, is defined in the following way. Let us identify 77 ~ with 

]7o = {t 67/~+~: t = (t ~ ..... t ~ , O ) , t * ~ Z ~ , i =  1 ..... v} 

We write also 

Y k = { t e Y ~ + a :  t =  (t ~ ..... t ~ , k ) , t * e Z ~ , i =  1,...,v} 

For  any t ~ Z  ~ ( t e  I1o) we write t ( k )  = t + ke~+~, e~+~ = (0 ..... 0, 1) e Z  ~+~. 
In  a similar way we can define T(k )  for  any T c Z ~. 

Then dR, B c 7/~+~, is defined to be the min imum length of  a tree, the 
vertices o f  which are the points of  B. The length o f  a tree is the sum of  the 
lengths o f  its lines, and the length o f  a line is taken in the metric 

0 + 1  

p ( h ,  t2) = ~ It1 ~ - t2'], t~ = (t~ ~ ..... t~+ ~), j =  1 , 2  
i=3_ 

We define 
d, = d~r.(~) 

w h e r e ,  = (T, T ' )  and T = Yo, T'(1) c I"-t. 

R e m a r k .  We note that  the subspace 

Lo = { f ( T ) :  f ( T )  = 0 if TO- ~} 
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and its o r thogona l  complemen t  L+ c L2(~I) are invariant  with respect to A. 
One can show that  if the representat ion (1.3) exists and satisfies (1.4) and 
(1.5), then it is unique. The adjoint  opera to r  A* is also clustering and its 
cluster functions are equal  to oJk(~-l* ..... ~-k*), r* = (T ' ,  T) if ~ = (T, T') .  In  
part icular,  a clustering opera to r  A is self-adjoint iff 

= 

L e t L  - c L2(~.I), n i> 1, be the subspaee o f f u n c t i o n s f ( B )  w i t h f ( B )  = 0 when 
]B[ r n. Then 

L+ = ~ L ~ (1.6) 
T ~ = I  

An opera tor  A acting in L" is called clustering iff an opera to r  in L2(~I) equal  
to A on L ~ and to 0 on (L~) • is clustering. 

The main  result o f  this paper  is the following: 

Theorem 1.1.  Let a self-adjoint clustering opera to r  A be given such 
tha t  for  each k = 1, 2,... and any tl, . . . ,  t~ 

o~k(rtl ..... rt~) > L(C/3) k (1.7) 

where r~ = ({t}, {t}), t e g ~, and L and C do not  depend on k, tl ..... t~. 
Then  for  each N / >  1 there exists /30 =/3o(N, M, C, L) such that  for  

0 < fi < /3o there exists N + 1 mutual ly  or thogonal  subspaees ~ ..... 9f~u, 
~ u + ~  c L+ such that  they are invar iant  with respect to A and U~ and for  
l <~ s <<. N 

KzPSllx]l 2 ~< (Ax, x) <~ K2flSilxl[ 2, xe~t'~ (1.8) 

where K~ = K~(N, M, C, L) are constants,  i = 1, 2 . . ~ + ~  is the or thogona l  
complemen t  of  ~ �9 "'" @ WN. 

Moreover ,  ~ ,  1 ~< s ~< N, lies in the vicinity of  L s, i.e., 

Ilx - P  xll 0 . 9 )  

where Pz~ is the project ion onto L ~, and G = G(N, M, C, L) is a constant.  
Fo r  each k = 1 ..... N there exists a uni tary opera tor  Vk: ~ - + L  k such that  

1. V~(U~I~f~)V~-X= U,]L~ 
2. The  opera to r  

= V (AI )V  

in L k is clustering with clustering pa rame te r  h(/3) -+  0 when/3 -+  0. 

I t  is natural  to call ~ a k-poin t  subspaee, as A is clustering and is 
similar to e x p ( - A H ) ,  where H is the k-part icle SchrSdinger Hamil tonian .  
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This leads us to conjecture that the spectrum of A in ~ can be studied with 
known methods/7,8) 

In this paper we prove the first part  of Theorem 1.1, i.e., the existence 
of invariant subspaces and formulas (1.8) and (1.9). The last assertion of 
this theorem will be proved elsewhere. 

It  is proven in Ref. 4 that the conditions of Theorem 1.1 are satisfied 
for the transfer matrix of  the Ising model for arbitrary dimension v i> 2 and 
for sufficiently small/3. To study the spectrum of transfer matrices for more 
general random fields which can take arbitrary values our definition of the 
clustering operator can be generalized. For  the Ising model on 77 ~+~, e.g., 
wk(~'~,..., r~) is equal to 1-t~=1 wl(T~) and w~(T) is the semiinvariant of  the 
random variables Or, t e T ~ 7/~ (zero time slice), where $t is the spin variable 
et minus the orthogonal projection of et onto the subspace L2(Xo,t) and X0., 
is the minimal e-algebra with respect to which all ~rt are measurable for 
t ~ c 7/~ (zero time) and less than t in lexicographic order (see Ref. 4). 

2. C O N S T R U C T I O N  OF I N V A R I A N T  S U B S P A C E S  

The constants which appear in subsequent considerations depend on N, 
M, and L. 

I . e m m a  2.1. Let A be an operator for which the conditions of  Theorem 
1.1 are satisfied. Then for each N there exists/30 such that for 0 < fl < /3o 
and any s, 1 ~< s ~< N, there exists a representation 

L + = OW~ @ 2 s 

where both OW~ and 2 S are invariant with respect to A and 

(Ax, x) > K~/3qlxll ~, x~ow S (2.1a) 

I(Ax, x)l < K~/3~+IlIxlI~, x ~ 2 ~  (2.1b) 

for some constants/<1 and/ (2 .  

The proof  of  this lemma will be given below; now we shall deduce 
Theorem 1.1 from it. 

We can assume of course that/<1 > /<2/3 and then/<1/3 s > K2/3 ~+ 1. From 
this and f rom (2. l a) and (2. lb) it follows that 

Qzr = E~Kla',~), Q-~, = E~-K2~'*l,x2/+b 

where Q~e, and Q ~  are projections onto ow~ and 2 ~, respectively, and EA, 
A c R ~, is the spectral family for A. In particular it follows that 

OWl __q OW2 c ... ~ =W N 
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Let us put  

= 2#1, ~ = ~e~ G ~e~ ..... a G  = ~e~ @ ~ -  1, a ~  +~ = 2 ~ 

One can easily verify that  these subspaces are invariant  and satisfy (1.8). 
Later  we shall prove  (1.9). 

Proof  of  Lemma 2.1. Let us denote  

L<~,~= + L  k, L > n =  @ L k 
k=l k=n+l 

Each opera to r  B acting in L+ can be represented as an opera to r  matr ix  
B ~ IlBr.~[I, m ,  n = 1, 2 ..... in the representat ion (1.6), where Bin, = PL~BPL,. 
Similarly, the decomposi t ion  L+ = L "~ ~@ L > ~ induces the opera tor  matr ix  

B= (B~ 

Moreover ,  

B ~  

m , n ~ k  BI~ ~ IIBm. ll, 

and similarly for the rest of  the B}~ ). 
Let  us consider the diagonal  opera tor  

(Hf) (T)  = hr f (T)  

with 

where % iS defined above,  and T = {tl .... , tk}. Let  us put  A = A - H and 
let fir,r ' be the matr ix  elements of  .4. 

I . e m m a  2.2. Let  a clustering opera to r  A be given and let its cluster 
functions ~o k satisfy (1.5) with fl > 0 sufficiently small. Then for  any T and 
any k /> 1 

]dT,r,[ ~< f (Ofi)m~x(g'm)' k # m (2.2) 
r ,  =k [(Dfi) re+l, k m 

where m = tT[, and D depends only on v. 

Corollaries to Lemma 2.2 
1. I f  .4 ~ (Am.), then 

f(Dfl)  max(re'n), m # n (2.3) 
][AmnH <~ ~.(Dfi)m+,, m = n 

In  fact, for  m # n 

IIAm, + X=ll  = llAm,[l = ] l ~ m l l  



236 V.A. Malyshev and R. A. Minlos 

and due to the self-adjointness of.4m~ + Anm 

[IAmn +/r.mll = sup [((Am. + A.~)f , f ) l  
f~L 2 , IIfll = 1 

!IfLIsup= 1 = 2 T.r,.irl=M.irq=,dr, r f (T ) f (T ' )  

sup ~ la~,..l(lf(T)[ = + [f(T')[ 2) 
Ilfll = 1 ITI =m,W'l =n 

~< sup5 ( sup ~ I~,,~l Z I / ( r ) l  ~ 
I ! f l l = l L l T l = m ,  [ T q = n  [ ~ ' l = m  

"4-,T'I=nsup ITl=m ~ ](IT"T] I ' l l  =n ]f(:F')12} <~ (Dfl)max(m'n) 

The case m = n can be examined similarly. 
2. As Ilg=l] < Mp", we get for all m, n 

IIAm.[I ~< (O/3) r~<m'"> (2.4) 

for  some/3 .  Here (Ar~,) ~ A. 
3. Using the bound 

]]Q[I ~< s u p ~  [IQm, II (2.5) 
m 

for any Q ~ (QmrJ in L+ (Q* = Q) and the bound (2.4), one can find that 

max{[[A~ll, IIA~mII = IIA~II) < B(B~)  ~+~ (2.6) 

for some B, /3 and all k = 1, 2 ..... 
4. Using the previous bounds one can find that for all k = 1, 2 .... 

max{i(A[2x, y)[, [(A~2x, Y)I, [(A~x, y)[} ~< B(/~)z+~llxlI. Ilyl], 
x, y e L +  (2.7) 

and for some constant R 

k 

[(A~Ix, x)l < R(D~) "~ ~ (O/3)qlPLsxll ~ (2.8) 
S = l  

5. Using the bound hr > L(Cfl) lri and (2.8) one can get, for all k such 
that 

(2R/L)(D/C)k(Dfl) 112 < 1 (2.9) 

the following inequality: 

(Ax, x) > (L/2)(C/3)~llxi[ 2, x ~ L k (2.10) 

I . e m m a  2.3. I f  the clustering operator A satisfies (1.7), then for any 
N / >  1 there exists/3o = rio(N) such that for aI1 fl < t3o and 1 ~< k ~< N the 
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operator A~I is invertible in L -<e and for any m, n ~< k 

II(Ah);~ll < ~/~m~x(m,.)-m-~ (2.11) 
where J~ is a constant. 

Corollary to Lemma 2.3. From (2.11) and (2.5) one can find that 

II(Ah)-lll < ~-~ (2.12) 

where/~ is a constant [cf. (2.9)]. 

Proofs of Lemmas 2.2 and 2.3 will be given in the next section; now we 
shall derive Lemma 2.1 from them. 

P r o o f  o f  L e m m a  2 . 1 .  We shall look f o r ~  k, 1 ~< k -%< N, as a graph 

~ = { r 1 6 2  ~ e L  -<~} 

of some operator S~: L -<~ -->L >~. 
From A ~  k _ ~ we get the following equation for S~: 

S k = A  k r A ~ - I  A k S k r A  k ~ - I  k k k ~ -1  21~ l l j  + 22 ~ ~ j  - S A ~ 2 S  ( A l l )  �9 (2.13) 

We can consider the right-hand side of this equation as the mapping G k of 
the space ~L<-'~ L>K of bounded operators from L <~ into L >k into itself. We 
shall sometimes identify these operators with operators acting in L+ and 
specified by the matrix (o ;) 
with respect to the decomposition L+ = L <~ + L >~. 

From (2.6) and (2.10) it follows that for sufficiently small fi the mapping 
G k leaves some sphere 

= {l[skU < K/3) = 92L~K,z-K (2.14) 

fixed, where K is a constant, and is a contraction in this sphere. It follows 
that there exists a solution of (2.13), i.e., there exists an invariant subspace 
&o~. Then (2.1a) follows from (2.7) and (2.10) if we suppose that (2.9) holds 
for given N. 

To prove (2.1b) we need the following result: 

L e m m a  2.4, For  fi sufficiently small and for all 1 ~< k ~< N 

[]S~m~l[ < L ( D f i )  ~ -  ~, m > k ,  n <<. k (2.15) 

where /3  and L are constants. 

The proof of this lemma will be given below; now we shall prove (2.1b) 
using (2.15). 
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Let us note that  ~ k  is a g raph  of  ( - S k )  * 

5P ~ = {cp - (S~)*~o: ~0eL >~} 

F r o m  this, for  x = ~o - (Sk)*cp eS~  k, ~o ~ L  >k, we have 

( A x ,  x)  = (A~2cp, ~o) - (A~2% (Sk)*q~) - (A~I(S~)*cp, ~) 

+ (A~I(S~)*% (S~)%) 
By (2.7) 

max{l(A~2% q~)l, I(A~2cP,(S~)*q~)I, I(A~2(S~)*% q~)[} 

Moreover ,  one can easily get a bound  

I(Afi(Sg*% (S~)%)[ 

Using 

[l(SkA~l(g~)*)m,,~]l 

and (2.4) and (2.15), we get 

(2.16) 

II(S~A~l(g~)*)m,][ <~ ko(bo/3) m+~-~ 

for  some constants  Ro and Do. F r o m  this inequality and f rom (2.17) we get 

A k k , [( 11(S ) ~, (S~)*v)[ < L/3~+~ilvH2 (2.18) 

Using (2.16) and (2.18), one can prove (2.1b). L e m m a  2.1 is proved.  

P r o o f  o f L e m m a  2.4. Let us fix some constant  / )  and consider a 
set ~3~ ~ c 9.1L.<k,L>~ of  opera tors  f rom L <-k into L >k and such that  their 
matr ix  elements S ,,~ (Sm,)~ > ~;"-< ~ satisfy the following inequality 

IISm, H < K(Df i )  ~-'~, m > k ,  n <~ k (2.19) 

with some constant  K. 
The  space ~3~ k is complete  with respect to the no rm 

[1stt~ = sup ([[Sm,n[l(Dfl) -(m-n) } (2.20) 
m >  k , n  <~lc 

L e m m a  2.4 follows f rom the following: 

l . o m m a  2.5. Fo r  D = /7(C, N)  sufficiently large and /3 sufficiently 
small the mapp ing  G k satisfies the following condit ions:  

1. I t  maps  ~3~ k into itself. 

2. I t  leaves some sphere c~ c ~3n ~, 

= ( i i s I l ~  < ,~/3} 

fixed, where k is a constant.  

< sup ~ Ii(S~A~l(Sk)*)m.,ll �9 ]]~]l z (2.17) 
m > ~ c , n > t c  

~< ~ IIsL,II ]I(A~I)~,pll ]](s~)*,d 
t , p  
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3. It  is a contract ion in ~. 
The p roo f  o f  this lemma can be obtained f rom (2.3) and (2.1 1). 

P r o o f  o f  (7.1 1). F r o m  the decomposi t ion 

x = x<k + xk + x>~ = 99 + Sk50 

where x e JYk, xk e L k, x < ~ e L < r ~>, x < k e L > ~, and 50 a L -< ~ one can see that  

50 = X<~ -4- Xk, 8;c50 = x>k 
So 

llx>~ll < Hsq  ]150]1 < [Is~H ][xll < const  x fi[ixl] (2.21) 

Then it follows f rom (2.7) and (2.14) that  

](Ax, x)  - (A% 50)1 < I(A~2S~50, 50)1 + I(A[250, S~50)[ 
+ I(A~2s~50, s~50)1 < K(D/3)~+~II50[I~ 

and f rom (1.8) we get 

(A50, 50) < K2fi~l150[] 2 
(A50, 50) = (A~xx<k, x<~) + (A~2x~, xk) + (A~lx<~,  xk) + (A~2xk, x<k) 

Also f rom (2.7) we get 

](A% 50) - (Ax<~,  x<~)] < (/3/3)~]]xk]] Ilx<~[[ 
and 

l (Ax<~,  x<~)l < R1/3q5011 ~" 

where R~ is a constant.  Using (2.9), we get 

/Ix<hi[ < (R~5)'~Ilxll (2.22) 

3. PROOF OF L E M M A S  2.2 A N D  2.3 

Let A be a clustering operator  with matrix elements at ,r , ,  and let 
oJk(r 1 ..... %) be its cluster functions, which satisfy a somewhat  weaker con- 

dition than (1.6): 
/c 

]o~(~1 .... , ~)1 < M I ~  K~"(a) d~' (3.1) 
i = l  

where x > 0, 0 < a < 1, M > 0 are constants and I~l = I T] + IT'] if 
, = (7", r') .  

l o m m a  3.1. Let A be a self-adjoint clustering operator  satisfying (3.1). 
Then for  A sufficiently small 

( ' / / - ) ~ m a x ( h : , m )  
< ( C K , j k + m ~ k ~  , , k r m ( 3 . 2 )  

I �9 = T' I k " " ~(D)t)  m+l, k = m 
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Where m = IT[, dr , r '  represents the matrix elements o f  A, and C and D are 
some constants. 

ProoL Let IT] = m. We consider the case k # m. Then 

T = IT" =k (~i ..... ~s) i=l 
u;zl =(T,T') 

S = I, 2 ..... rain(k, n) 

Let us denote for  T r z and for  s = 1, 2 .... 

T: I~I  =s 

Then 

rain(k,m) 

IT,~[= k [aT,T, [ < MK m+k ~ ( l / p ! )  e~k, T T ~ T I ~  oS~,(Ti) 
= p=l ,..., ( I,...,T~): itJ...U p=T i=l 

kl +, . .  + k v = k  

(3.3) 

Here ~ki ..... k, means summat ion over all ordered collections o f  integers k~, 
i = 1,...,p, such that  ~ = ~  k~ = k. In  ~.r~ ..... r ,  the summation is over all 
ordered collections o f  mutual ly disjoint T~ ___ T, i = 1 .... , p, the union of  
which is equal to T. 

Further,  
p lo 

1I < l-I (T1,...Tp):uTI=T i=l (Pl,. . . ,Pp) i = 1  

where 

[~ c T,l~l =l @=T,~=2~ v 
1@1 = I,[TI =/r 

(3.4) 

where C is a constant.  The last bound  can be obtained as in Refs. 5 and 6. 
Further,  for h < 1/2 

o,x~,+~ h~<~ < Cvh (3.5) 

where Cv > I is an absolute constant.  F r o m  (3.3)-(3.5) we get for  CC~h < 1 

min(k.m) 

Z [ar.r'l < M Km+~ Z (mP/P!) Z Z (C~)m+k-P 
IT'[ =k p=l k I ..... kp l I ..... Ip 

kl+...+kp=k 11+... +Ip= 7n 

< MKm+k2k+m(~A)raax<~'m)em < MKm+k(DA) max(m'k) (3.6) 

where /3  is an absolute constant.  
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Let us consider now the case m = k. Following previous arguments, we 
obtain 

IT" =k T:'T'#T,]T'[ =k 

+ 5, 5, 
l~<p~<k-i ~i . . . . .  'rp 

U ~ = ( T , T ' )  

where = in the first term denotes any one-to-one mapping T---> T'.  Here the 
first term corresponds to the decompositions of  the pair (T, T ')  onto one-point 
pairs and the second term corresponds to the remaining decompositions. 
The second term has a bound similar to the previous case. The first term has 
the bound 

d(x ,O)  > i 

< M~mm(DA)m-~OA ~ < ~m(5~)m+~ 

where /~  is a constant. The lemma is proved. 

P r o o f  o f  L e m m a  2.3.  By the decomposition 

A~I = H~I + A~I = (H~l)l~2[E + (H~I) -1/27k~ll~,-llj~k ~-l/21tukjt~,11)~l/2 (3.7) 

we have 
( A ~ )  -~ = (H~[~)-~/~(E + V ~ ) - Z ( H ~ )  -~/~ 

where 

V k = ,,.ZZll ] n l l \ ~ l l )  

The operator V~ is clustering and its cluster functions have the property (3.1) 
for h = fi and ~ = (Cfl) -~/~, 3;I = M / L ,  where M is a constant in (1.6). 
Moreover, Vk = 12~. 

By (2.3) we get for k ~< N a n d  m, n ~< k 

l(/)R~max(m, n) 
1~I(C ~'~ - (m + n)12J ' .~r ' j  [[ Vk [[ rn,n < ~, o~, l ( D • ) m  + 1, 

( f~l l2(m - n) 

J ~ ( a o a ) m a x ( m ' n ) + l t ~  ' ' 

m#n 

m=Tl 

( R 1 / 2 ( m  - n) 
rn r n < K,) w , m # n 

m = n t f l ,  m = n  

where K = M ( ( C o l ) D )  N+I. Further, for a n y p  > 1 

II(vk")m,.H-<< ~ [l(vk)m,slll II(v~)s,,~[I ... H(v~)s._~,.I[ 
Sl,"-,p - I 

<~ ~_~ am- slasz- 22 "'" asp_ ~- ~ = APm- 
81,"',p- I 

where 

= f K f l  "tl2, l # 0 

a~ LK~,  l = 0 
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Let  us put  

q~(z) = ~ ,  akz k = Kfl + K/31/2 z 
k = - ~  1 -- f i~/2z  + z -  1/i 

for/31/2 < z < p-1/2. 

I t  is clear  tha t  

Thus  for  the series 

A ~ . z  ~ : ( ~ ( z ) ) ,  
]r --Qo 

(3.8) 

~_, ( - 1 ) ' ( V k )  v = Gk (3.9) 
p = l  

we have 

[1 (G1c)m,n II < APm-. = Bin_. 
p = l  

where B~ are the coefficients o f  the series 

q~(z)/[1 - q~(z)] = ~ Bzz z (3.10) 
l =  --cO 

i f  (h/3) z/2 < z < (h/3) -1/2, h > 1, is the absolute  constant .  Thus f rom (3.10) 

and  (3.8) we get for  small /3 

[Bp[ < R/3112(~/3) I'tj2, p = + 1, +_2 .... (3.11) 

where R and ~ are constants .  F r o m  (3.7) and  (3.9) we get 

[ K][IC "~ - 1/2['J~ ( ~ l - k  ~ - 112 (A~I) -1 = (H~I) -1 + t--x1, ,~kt~l tJ  

and  by  (3.11) 

II(A~I ) -  1[[ < L/3m~,x(m.,~) . . . . .  , F = F ( N ,  M ,  L )  

The l emma is proved.  
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